上海长征医院萧毅教授:医学影像AI不会一帆风顺(2)
在头颈部的应用,主要是对于甲状腺结节的鉴别,这也是富有挑战性,因为近几年来,国内越来越多的 消融手术使手术病理数据大量减少。
据现有的结果来看,现在有两个公司的模型效果比较好。以浙大孔德兴教授所在的德尚韵兴提供的数据显示,该公司对甲状腺结节鉴别的敏感性和特异性都超过了90%。
人工智能企业扎堆的肺部影像应用集中在三大块:第一,肺癌。肺癌早期筛查、良恶性鉴别以及预后预判。
第二,肺炎。AI在新冠疫情中发挥了重要作用,这也是2020年、2021年多家公司得到社会认可的重要原因。
第三是肺气肿。
目前,肺部疾病相关的行业标准、数据库、指南等已经在拟定和筹建中 ,肺结节部分的已经完成。
肺部疾病辅助系统在国内外各大医院应用广泛,明显提高了工作效率。
相关的技术也更加聚焦到肺部疾病辅助系统如何优化医生的工作流程、假阴性和假阳性的风险控制、在医联体内的联动以及云诊断等实际工作场景上,帮助医生快速精准定位和定性结节,肺动脉高压时提高预警,肺结核和矽肺智能诊断。
除了以上临床应用,AI在基因预测以及浸润性分型中,都发挥了重要作用。
肺炎AI则是一个因时而生的产品,可以在2-3秒内检出病变,10秒完成全流程评估,及时筛查出疑似病人,帮助医生对确诊病人进行分型、对重症患者进行预警,进而评估确诊患者的预后情况,这对于提高诊断的时效性是不可或缺的。
心血管AI的难度会更大,主攻的企业在一开始集中在形态学的重建上:重建心脏的冠脉,检出斑块。现在的工作更加深入,可以进行功能学的评估:如CT血流储备分数心肌量化等评估。
使用人工智能进行形态学及功能学的评价,医生就可以对心血管疾病有一个相对完整的认识,初步满足临床的需求。
不仅如此,随着对疾病认识的增加,人工智能企业也逐渐地往深、往宽处走。心血管疾病筛、诊、治一体化的解决方案,不仅仅是满足筛查、诊断,同时还对治疗决策与规划进行了大量模型的构建,而完整的解决方案才是医生所需要的内容。
乳腺癌是全球范围内女性最常见的死因,在中国也如此。用AI的手段来辅助经验不足的医生,进行准确的诊断,是一个有意义的命题。
我国AI研究起步虽然较晚,但在乳腺影像中的应用发展较快。国内AI企业研发较成熟的乳腺相关辅助诊断系统,基本围绕乳腺钼靶开展。
但是,最终的效能还需临床进一步的验证。
AI在腹部影像当中也有探索,但是由于腹部影像的特殊性及难度,国内AI多数研究以单中心、小样本为主,结果的可靠性尚需进一步验证;而且多为回顾性分析,是否能真正地应用于临床,还要开展更多的前瞻性研究。
国内AI商业化产品目前多采用单一影像或病理数据,对疾病进行影像识别和病理诊断,无法综合医疗数据对患者的整体情况进行衡量,造成治疗、疗效评价和预后预测相关AI产品的缺乏。
在腹部领域,还有一些跨模态的复合任务流程,进入到了智能分析、智能报告和手术规划等领域。
国内外在骨骼系统AI的研发基本处于同一起跑线, 主要集中在骨龄和骨折,能够解决的疾病问题还是比较少的。
另外,AI骨关节影像的研究和应用多是对于简单病灶或征象的识别,是否能达到“辅助诊断”水平、如何对复杂疾病进行综合分析和诊断仍是我们要进一步研究的重点。
除此之外,在其他影像当中,AI也有大量的使用,包括病理AI、皮肤AI、眼底图AI、脑电图AI等。
但是,最复杂的医学影像AI应用,仍当属常规的放射影像、病理影像。
AI医学影像的准入——监管批准随着医疗AI产品逐渐成熟,也获得了监管部门的批准。
从2020年到目前,医学影像AI行业已经拿到22张三类证,大部分都是心胸领域。
这些标红的企业都是医学影像AI产学研用创新联盟的成员,这也是让我非常开心的一点。
随着三类证的下发,中国医疗AI企业的产品也体现了国际化能力。推想的产品落地欧盟、入选了联合国采购名录,Airdoc的产品在澳大利亚获得了澳媒的称赞,汇医慧影也把产品输送到了拉丁美洲,以及亚太地区泰国、马来西亚和欧洲以及非洲地区。
文章来源:《中国医学影像技术》 网址: http://www.zgyxyxjszz.cn/zonghexinwen/2022/0112/810.html