首都医科大学宣武医院副院长卢洁教授:AI在脑脱(3)
人工智能辅助鉴别诊断同样具有挑战性,主要在于基于单一的临床数据库、基于单一序列、基于单一磁共振仪,组学列线图仍缺乏可解释性,且缺乏人工智能模型和临床医生判读的对比。
视神经脊髓炎谱系疾病可以根据AQP4抗体阴性与AQP4抗体阳性来进行诊断,磁共振评估是诊断中的重要环节。
半球白质病灶可表现为肿瘤样脱髓鞘病变、多发性硬化样病变以及急性播散性脑脊髓炎样病变。
临床中应用的常规磁共振成像可以为多发性硬化提供多维度的信息,包括病灶数量、位置、体积,以及强化的特点和病灶进程。而且,常规磁共振诊断多发性硬化的灵敏度较高,可达到约95%。
所以我们是不是可以通过基于拓扑的人工智能模型来帮助预测预后。
此外我们还可以看到NMOSD延髓背侧、极后区及脑干受损的磁共振表现,表现为延髓背侧病灶、极后区病灶、四脑室周围及桥脑腹侧损害、中脑背侧损害以及四脑室周围损害。
近日,2022年医学人工智能大会(CMAI 2022)暨第二届“中国医学学术期刊发展”高端论坛召开。
在脑脱髓鞘病MRI成像人工智能应用研究中,我们收集到150例患者,其中73例为多发性硬化,77例为视神经脊髓炎。我们以68例患者作为训练集,62例作为验证集,手动勾画病灶,基于组学列线图在T2WI图像的病灶中提取了273个定量组学特征。
多发性硬化病灶的常见位置为侧脑室周围、皮层下、u型纤维、脑干和小脑,形态呈椭圆形或手指状。急性期病灶有膨胀感,呈现“煎蛋征”、“开环状”、“C型”强化,强化持续时间在90天以内。在慢性期T1呈现低信号病灶,呈“黑洞”状。
这是多发性硬化病灶在脑内的典型分布位置,侧脑室旁、幕下以及胼胝体。
NMOSD的脑内病灶并不少见,43%-70%的患者首次发病即可出现脑内病灶,主要包括围绕脑室系统的室管膜周围病灶、侧脑室周围及胼胝体病灶、皮质脊髓束病灶、半球白质病灶以及非特异性病灶。
多发性硬化、视神经脊髓炎是常见的脑脱髓鞘病,但是二者的鉴别诊断困难;而人工智能可以帮助挖掘影像图像中肉眼无法识别的高维定量特征;基于拓扑的人工智能模型在预测脑脱髓鞘病预后中具有重要的价值,未来我们也希望在这方面进行更深入的探索。
另外一个课题对189例的患者进行了研究,其中95例是多发性硬化,94例是视神经脊髓炎,其中以135例患者作为训练集,54例作为验证集,手动勾画病灶之后,同样基于组学列线图,在颈髓T2WI图像显示的病灶中提取了485定量组学特征。
雷峰网《医健AI掘金志》作为本次大会的支持单位,全程参与嘉宾的演讲内容与深度报道。
视神经脊髓炎的诊断标准多年来经历了数次演变,1894年首次提出NMO的概念;1999年出现第一个NMO诊断标准;2004年AQP4-lgG发现后,NMO被认为是不同于MS的独立疾病;2007年提出了NMOSD(视神经脊髓炎谱系疾病)的新概念;2015年出现了最新的NMOSD诊断共识。
我们也可以将拓扑在脑脱髓鞘疾病的诊断中进行应用。由于MS和NMO两种疾病的发病机制不同,其脑内病灶的空间分布不同,形态、大小也不相同,所以这两种疾病的脑内病灶的拓扑性质并不相同,我们希望能够找到潜在的鉴别诊断突破点。
文章来源:《中国医学影像技术》 网址: http://www.zgyxyxjszz.cn/zonghexinwen/2022/1021/952.html
上一篇:中山医院牵头,国内首个跨区域跨机构跨门类的
下一篇:哪些医学杂志属于国家级的刊物